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a b s t r a c t

A special antisymmetric
form depends linearly on
ten inertia parameters of
six components of the cla
proposed which is based o
using the example of a rig

A knowledge of the inertia parameters of a rigid body, that is,
the mass, the three coordinates of the centre of mass and the six
components of the central inertia tensor is required in different
applications and, in particular, for the precise control of motion
and in inverse dynamic problems. Frequently, these parameters are
only approximately known. In proportional models,1–3 the iner-
tia parameters of segments of the human body are determined
by extrapolation from regression equations, determined for a cer-
tain sample. Inertia parameters can also be obtained by simulation

of these segments by means of more or less complex geometrical
figures.4,5

Identification procedures have been actively developed in
robotics since, in the case of certain types of robots, there are no
other routes for obtaining the required parameters.6 The recursive
Newton–Euler method has been used in which the inertia param-
eters are represented by a ten-dimensional vector7 and it has been
shown that, when identifying the inertia parameters of segments
of the human body, on account of the high number of degrees of
freedom, the results are found to be unsatisfactory (starting from
six degrees of freedom).

In the identification algorithm below, the ten inertia parameters
of a rigid body are united into a symmetric 4 × 4 matrix of the Fayet
global inertia tensor8,9 and the equations of motion are written
using antisymmetric 4 × 4 matrices.10

1. Dynamic characteristics of a rigid body

Suppose an absolutely rigid body S moves in a Galilean reference
system Ox0y0z0 and that A ∈ S is a certain fixed point in the body
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matrix form of the equation of motion of a rigid body is proposed. This
ymmetric (4 × 4)-matrix of the Fayet global inertia tensor, containing the
id body (the mass, the three coordinates of the centre of mass and the
l inertia tensor). For identifying the global inertia tensor, an algorithm is
method of least squares and the method of conjugate gradients and tested
dy, the motion of which is obtained by computer modelling.
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with an initial position A0. We define the translational displacement
of the body by the vector T = OA and rotation is described by the
rotation matrix R : AB = R(t)A0B0 for an arbitrary point B ∈ S with
an initial position B0.

Suppose a(B) is the acceleration of point B. We shall call the time
derivative of the momentum of the body the dynamic resultant �
and the derivative of the angular momentum with respect to point
A the dynamic moment �(A):

(1.1)
The moments are henceforth represented by antisymmetric 3 × 3
matrices which are calculated using tensor multiplication and,
unless otherwise stated, integration is carried out over B ∈ S.

Using the translation vector T(t) and the rotational matrix R(t),
the position and acceleration of a point B at any instant of time can
be expressed using the formulae

(1.2)

For simplicity, we shall henceforth omit the argument t in the func-
tions T̈(t), R(t) and R̈(t).

Let m be the mass of the body and G be its centre of mass.
From relations (1.1) and (1.2) and the obvious equality � = ma(G),
we obtain

(1.3)
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Using the property of transposition and the definition of the centre
of mass

we rewrite the second relation of (1.3) in the form

(1.4)

Here K0 is the Poinsot inertia tensor of the body S at the point A0.

Remarks.

1◦. The dynamic resultant � depends linearly on the parameters m
and mA0G0, and the dynamic moment �(A) depends linearly on
the parameters mA0G0 and K0.

2◦. The classical Poinsot inertia tensor I and the Poinsot tensor K
are related by the equality K = trIE/2 − I, where E is a unit 3 × 3
matrix.

2. The equations of motion

Let F be the sum of the external forces acting on the body S, f is
their mass density and M(A) is the moment of the external forces
about the point A:

Separating out the force of gravity with the gravitational g from the
system of forces, we put

On the basis of the general theorems of dynamics

and, using relations (1.3) and (1.4), we rewrite the equations of
motion in the vector form
(2.1)

Introducing the 4 × 4 matrices

we rewrite Eq. (2.1) in the matrix form

(2.2)

with antisymmetric 4 × 4 matrices on the left and right-hand sides
of the equation. The matrix H represents the Fayet global inertia
matics and Mechanics 72 (2008) 22–25 23

matrix8,9 and contains the ten inertia parameters of the body S.
Equation (2.2) are convenient for the identifying the matrix H since
they are linear with respect to H.

The matrices � and � contain information on the kinematic
state of the body which is experimentally determined using cam-
eras which record the motion of a body with reflecting markers
fastened to it. The matrix �(A) contains the forces and moments
about the point A acting on a body. The information for this matrix
is obtained using a force platform which measures the forces and
moments acting on the body.

Remarks.

1◦. The matrix form of the equations of motion contains six scalar
equations corresponding to the six independent elements of an
antisymmetric 4 × 4 matrix.

2◦. The matrix � is a 4 × 4 rotation matrix in R4 since
��T = �T� = E.

We will now show that the matrix H is positive definite. Actually,
we rewrite it in the form

from which the positiveness of the associated quadratic form

follows for any vector V from R4 (〈 , 〉 is a scalar product).
It follows from the equality 〈V, HV〉 = 0 that

When B0 = A0, we obtain v = 0 and, for any B0 ∈ S, it follows from the
equality 〈A0B0, U〉 = 0 that U = 0 in the case of a three-dimensional
body. Hence, 〈V, HV〉 = 0 ⇒ U = 0 and the positive definiteness of the
matrix H is proved.
Remark. The positive definiteness of the matrix H generalizes the
positive definiteness of the Poinsot inertia tensor K0.

3. The method of least squares

The following problem is considered: it is required to find the
positive definite 4 × 4 matrix H which satisfies Eq. (2.2), knowing
the 4 × 4 matrices �(t) and �(t), obtained by observing the motion
of the body and, also, knowing the matrix �(A, t), composed of the
forces and the moments of the forces acting on the body.

We consider the space of the matrices M4×4 with a scalar product
〈A, B〉 = tr(ABT) for any A, B ∈ M4×4. In the subspace M̃4×4 of symmet-
ric 4 × 4 matrices, this scalar product reduces to the relation 〈A,
B〉 = tr(AB).

For each instant of time, Eq. (2.2) gives six conditions for deter-
mining the ten unknown parameters, and this equation must
therefore be considered for at least two different instants of time.
However, in order to average the noise, it is desirable that more
than two instants of time are considered. We shall consider n exper-
iments and suppose that ti is the duration of the i-th experiment.
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The method of least squares

is used to solve this overdetermined system of equations with a
functional of the form

For simplicity, we shall subsequently write �i, �i, �i (A) instead
of �i(t), �i(t), �i(A, t). Using the property tr(PQ) = tr(QP) for any P,
Q ∈ M4×4, we rewrite the functional in the form

The subscript after the brackets indicates the degree of homogene-
ity of the expression with respect to the components of the matrix
H.

We will now show that the functional J(H) is strictly convex and,
consequently, its minimum is attained when the gradient vanishes:
For the proof, we consider the linear mapping of symmetric 4 × 4
matrices in the space M̃4×4

The mapping L(·) is self-adjoint in M̃4×4 in the sense of the scalar
product 〈·, ·〉 and positive, which follows from the relation

The strict convexity of the functional follows from this.
matics and Mechanics 72 (2008) 22–25

4. The identification algorithm

The algorithm of the conjugate gradient method, which enables
one to identify the matrix H, consists of the following successive
steps.

Step 0. We select an initial approximation H0 to the symmet-
ric 4 × 4 matrix H and put p = 0 and D0 = −G0 = −�J(H0). If
|G0| < �, we terminate the calculations.

Step 1. We calculate �p > 0 using the formula

Step 2. We calculate

If |Gp+1| < �, we terminate the calculation.

Step 3. We calculate

We increase the value of the index p by unity and return to step 1.

Remarks.

1◦. The quantity �, determined in Step 1, is obtained by solving the
equation

2◦. The choice of �p in Step 3 gives the same result as
since the symmetric 4 × 4 matrix Gp is orthogonal by construction.

5. Example

We will now consider the case of the motion of a homogeneous
parallelepiped of mass m = 0.8 kg and edges 0.4 m, 0.3 m and 0.5 m
under the action of a force F applied at the point A (see Fig. 1).

From experiment to experiment, only the magnitude of the force
F changes in the matrix

The motion of the parallelepiped was simulated using the “Solid
Dynamics” program. This program enables one to determine the
kinematics of any point of a rigid body. In each experiment, the
positions of the vertices B and C of the parallelepiped (Fig. 1) were
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Fig. 1.

recorded at each instant of time. Using points A, B and C, the posi-
tion of the trihedron Axyz associated with the parallelepiped was

determined and, in the final analysis, the matrices � and � were
determined. The values H1 and H5 of the matrix H, obtained by iden-
tification using one and five simulations respectively, are presented
below.

The components of the matrix H1 differ from the components of
the matrix H5 by less than 1%. The classical Poisson inertia tensor
I(A) is calculated using the Poinsot tensor K0 which has been found
using the formula I(A) = tr(K0)E − K0, and the Huygens formula
matics and Mechanics 72 (2008) 22–25 25

was used to transfer from the inertia tensor at the point A to the
central inertia tensor at the centre of mass G.

The inertia parameters of the parallelepiped which have been
identified are identical to the specified parameters up to four dec-
imal places:
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